In telecommunications, 4G is the fourth generation of cellular wireless standards. It is a successor to the 3G and 2G families of standards. In 2009, the ITU-R organization specified the IMT-Advanced (International Mobile Telecommunications Advanced) requirements for 4G standards, setting peak speed requirements for 4G service at 100 Mbit/s for high mobility communication (such as from trains and cars) and 1 Gbit/s for low mobility communication (such as pedestrians and stationary users).[1]
One of the key technologies for 4G and beyond is called "Open Wireless Architecture (OWA)" supporting multiple wireless air interfaces in an open architecture platform.
A 4G system is expected to provide a comprehensive and secure all-IP based mobile broadband solution to laptop computer wireless modems, smartphones, and other mobile devices. Facilities such as ultra-broadband Internet access, IP telephony, gaming services, and streamed multimedia may be provided to users.
IMT-Advanced compliant versions of LTE and WiMAX are under development and called "LTE Advanced" and "WirelessMAN-Advanced" respectively. ITU has decided that LTE Advanced and WirelessMAN-Advanced should be accorded the official designation of IMT-Advanced. On December 6, 2010, ITU recognized that current versions of LTE, WiMax and other evolved 3G technologies that do not fulfill "IMT-Advanced" requirements could nevertheless be considered "4G", provided they represent forerunners to IMT-Advanced and "a substantial level of improvement in performance and capabilities with respect to the initial third generation systems now deployed."[2]
As seen below, in all suggestions for 4G, the CDMA spread spectrum radio technology used in 3G systems and IS-95 is abandoned and replaced by OFDMA and other frequency-domain equalization schemes. This is combined with MIMO (Multiple In Multiple Out), e.g., multiple antennas, dynamic channel allocation and channel-dependent scheduling.
The nomenclature of the generations generally refers to a change in the fundamental nature of the service, non-backwards compatible transmission technology, higher spectral bandwidth and new frequency bands. New generations have appeared about every ten years since the first move from 1981 analog (1G) to digital (2G) transmission in 1992. This was followed, in 2001, by 3G multi-media support, spread spectrum transmission and at least 200 kbit/s, in 2011 expected to be followed by 4G, which refers to all-IP packet-switched networks, mobile ultra-broadband (gigabit speed) access and multi-carrier transmission.
The fastest 3G based standard in the WCDMA family is the HSPA+ standard, which was commercially available in 2009 and offers 28 Mbit/s downstreams without MIMO, i.e. only with one antenna (it would offer 56 Mbit/s with 2x2 MIMO), and 22 Mbit/s upstreams. The fastest 3G based standard in the CDMA2000 family is the EV-DO Rev. B, which was available in 2010 and offers 15.67 Mbit/s downstreams.
In mid 1990s, the ITU-R organization specified the IMT-2000 specifications for what standards that should be considered 3G systems. However, the cell phone market brands only some of the IMT-2000 standards as 3G (for example WCDMA and CDMA2000), not all (3GPP EDGE, DECT and mobile-WiMAX all fulfill the IMT-2000 requirements and are formally accepted as 3G standards, but are typically not branded as 3G). In 2008, ITU-R specified the IMT-Advanced (International Mobile Telecommunications Advanced) requirements for 4G systems.
This article uses 4G to refer to IMT-Advanced (International Mobile Telecommunications Advanced), as defined by ITU-R. An IMT-Advanced cellular system must fulfill the following requirements:[3]
In September 2009, the technology proposals were submitted to the International Telecommunication Union (ITU) as 4G candidates.[6] Basically all proposals are based on two technologies:
Present implementations of WiMAX and LTE are largely considered a stopgap solution that will offer a considerable boost while WiMAX 2 (based on the 802.16m spec) and LTE Advanced are finalized. Both technologies aim to reach the objectives traced by the ITU, but are still far from being implemented.[3]
The first set of 3GPP requirements on LTE Advanced was approved in June 2008.[7] LTE Advanced will be standardized in 2010 as part of the Release 10 of the 3GPP specification. LTE Advanced will be fully built on the existing LTE specification Release 10 and not be defined as a new specification series. A summary of the technologies that have been studied as the basis for LTE Advanced is included in a technical report.[8]
Current LTE and WiMAX implementations are considered pre-4G, as they do not fully comply with the planned requirements of 1 Gbit/s for stationary reception and 100 Mbit/s for mobile.
Confusion has been caused by some mobile carriers who have launched products advertised as 4G but which are actually current technologies, commonly referred to as '3.9G', which do not follow the ITU-R defined principles for 4G standards. A common argument for branding 3.9G systems as new-generation is that they use different frequency bands to 3G technologies; that they are based on a new radio-interface paradigm; and that the standards are not backwards compatible with 3G, whilst some of the standards are expected to be forwards compatible with "real" 4G technologies.
While the ITU has adopted recommendations for technologies that would be used for future global communications, they do not actually perform the standardization or development work themselves, instead relying on the work of other standards bodies such as IEEE, The WiMAX Forum and 3GPP. Recently, ITU-R Working Party 5D approved two industry-developed technologies (LTE Advanced and WirelessMAN-Advanced)[9] for inclusion in the ITU’s International Mobile Telecommunications Advanced (IMT-Advanced program), which is focused on global communication systems that would be available several years from now.
The wireless telecommunications industry as a whole has early assumed the term 4G as a shorthand way to describe those advanced cellular technologies that, among other things, are based on or employ wide channel OFDMA and SC-FDE technologies, MIMO transmission and an all-IP based architecture. Mobile-WiMAX, first release LTE, IEEE 802.20 as well as Flash-OFDM meets these early assumptions, and have been considered as 4G candidate systems, but do not yet meet the more recent ITU-R IMT-Advanced requirements.
LTE Advanced (Long-term-evolution Advanced) is a candidate for IMT-Advanced standard, formally submitted by the 3GPP organization to ITU-T in the fall 2009, and expected to be released in 2012. The target of 3GPP LTE Advanced is to reach and surpass the ITU requirements.[10] LTE Advanced is essentially an enhancement to LTE. It is not a new technology but rather an improvement on the existing LTE network. This upgrade path makes it more cost effective for vendors to offer LTE and then upgrade to LTE Advanced which is similar to the upgrade from WCDMA to HSPA. LTE and LTE Advanced will also make use of additional spectrum and multiplexing to allow it to achieve higher data speeds. Coordinated Multi-point Transmission will also allow more system capacity to help handle the enhanced data speeds. Release 10 of LTE is expected to achieve the LTE Advanced speeds. Release 8 currently supports up to 300 Mbit/s download speeds which is still short of the IMT-Advanced standards.[11]
LTE Advanced | |
---|---|
Peak Download | 1 Gbit/s |
Peak Upload | 500 Mbit/s |
The IEEE 802.16m or WirelessMAN-Advanced evolution of 802.16e is under development, with the objective to fulfill the IMT-Advanced criteria of 1 Gbit/s for stationary reception and 100 Mbit/s for mobile reception.[12]
The pre-4G technology 3GPP Long Term Evolution (LTE) is often branded "4G", but the first LTE release does not fully comply with the IMT-Advanced requirements. LTE has a theoretical net bit rate capacity of up to 100 Mbit/s in the downlink and 50 Mbit/s in the uplink if a 20 MHz channel is used — and more if multiple-input multiple-output (MIMO), i.e. antenna arrays, are used.
The physical radio interface was at an early stage named High Speed OFDM Packet Access (HSOPA), now named Evolved UMTS Terrestrial Radio Access (E-UTRA). The first LTE USB dongles do not support any other radio interface.
The world's first publicly available LTE service was opened in the two Scandinavian capitals Stockholm (Ericsson and Nokia Siemens Networks systems) and Oslo (a Huawei system) on 14 December 2009, and branded 4G. The user terminals were manufactured by Samsung.[13] Currently, the three publicly available LTE services in the United States are provided by MetroPCS,[14] Verizon Wireless,[15] and AT&T. Sprint Nextel has also stated it's considering switching from WiMax to LTE in the near future.[15]
In South Korea, SK Telecom and LG U+ have enabled access to LTE service since 1 July 2011 for data devices, slated to go nationwide by 2012.[16]
LTE | |
---|---|
Peak Download | 100 Mbit/s |
Peak Upload | 50 Mbit/s |
The Mobile WiMAX (IEEE 802.16e-2005) mobile wireless broadband access (MWBA) standard (also known as WiBro in South Korea) is sometimes branded 4G, and offers peak data rates of 80 Mbit/s downlink and 40 Mbit/s uplink over 20 MHz wide channels .
In June 2006, the world's first commercial mobile WiMAX service was opened by KT in Seoul, South Korea.[17]
Sprint Nextel has begun using Mobile WiMAX, as of September 29, 2008 branded as a "4G" network even though the current version does not fulfil the IMT Advanced requirements on 4G systems.[18]
In Russia, Belarus and Nicaragua WiMax broadband internet access is offered by a Russian company Scartel, and is also branded 4G, Yota.
WiMAX | |
---|---|
Peak Download | 80 Mbit/s |
Peak Upload | 40 Mbit/s |
UMB (Ultra Mobile Broadband) was the brand name for a discontinued 4G project within the 3GPP2 standardization group to improve the CDMA2000 mobile phone standard for next generation applications and requirements. In November 2008, Qualcomm, UMB's lead sponsor, announced it was ending development of the technology, favouring LTE instead.[19] The objective was to achieve data speeds over 275 Mbit/s downstream and over 75 Mbit/s upstream.
At an early stage the Flash-OFDM system was expected to be further developed into a 4G standard.
The iBurst system (or HC-SDMA, High Capacity Spatial Division Multiple Access) was at an early stage considered as a 4G predecessor. It was later further developed into the Mobile Broadband Wireless Access (MBWA) system, also known as IEEE 802.20.
The following table shows a comparison of 4G candidate systems as well as other competing technologies.
Common Name |
Family | Primary Use | Radio Tech | Downstream (Mbit/s) |
Upstream (Mbit/s) |
Notes |
---|---|---|---|---|---|---|
HSPA+ | 3GPP | Used in 4G | CDMA/FDD MIMO |
21 42 84 672 |
5.8 11.5 22 168 |
HSPA+ is widely deployed. Revision 11 of the 3GPP states that HSPA+ is expected to have a throughput capacity of 672 Mbps. |
LTE | 3GPP | General 4G | OFDMA/MIMO/SC-FDMA | 100 Cat3 150 Cat4 300 Cat5 (in 20 MHz FDD) [20] |
50 Cat3/4 75 Cat5 (in 20 MHz FDD)[20] |
LTE-Advanced update expected to offer peak rates up to 1 Gbit/s fixed speeds and 100 Mb/s to mobile users. |
WiMAX | 802.16 | Mobile Internet cf. 802.16e | MIMO-SOFDMA | 128 (in 20 MHz bandwidth FDD) | 56 (in 20 MHz bandwidth FDD) | WiMAX update IEEE 802.16m is to offer peak rates of at least 1 Gbit/s fixed speeds and 100 Mbit/s to mobile users.[21] |
Flash-OFDM | Flash-OFDM | Mobile Internet mobility up to 200 mph (350 km/h) |
Flash-OFDM | 5.3 10.6 15.9 |
1.8 3.6 5.4 |
Mobile range 30 km (18 miles) extended range 55 km (34 miles) |
HIPERMAN | HIPERMAN | Mobile Internet | OFDM | 56.9 | ||
Wi-Fi | 802.11 (11n) |
Mobile Internet | OFDM/MIMO | 300 (using 4x4 configuration in 20 MHz bandwidth) or 600 (using 4x4 configuration in 40 MHz bandwidth) |
Antenna, RF front end enhancements and minor protocol timer tweaks have helped deploy long range P2P networks compromising on radial coverage, throughput and/or spectra efficiency (310 km & 382 km) |
|
iBurst | 802.20 | Mobile Internet | HC-SDMA/TDD/MIMO | 95 | 36 | Cell Radius: 3–12 km Speed: 250 km/h Spectral Efficiency: 13 bits/s/Hz/cell Spectrum Reuse Factor: "1" |
EDGE Evolution | GSM | Mobile Internet | TDMA/FDD | 1.6 | 0.5 | 3GPP Release 7 |
UMTS W-CDMA HSDPA+HSUPA |
UMTS/3GSM | General 3G | CDMA/FDD CDMA/FDD/MIMO |
0.384 14.4 |
0.384 5.76 |
HSDPA is widely deployed. Typical downlink rates today 2 Mbit/s, ~200 kbit/s uplink; HSPA+ downlink up to 56 Mbit/s. |
UMTS-TDD | UMTS/3GSM | Mobile Internet | CDMA/TDD | 16 | Reported speeds according to IPWireless using 16QAM modulation similar to HSDPA+HSUPA | |
EV-DO Rel. 0 EV-DO Rev.A EV-DO Rev.B |
CDMA2000 | Mobile Internet | CDMA/FDD | 2.45 3.1 4.9xN |
0.15 1.8 1.8xN |
Rev B note: N is the number of 1.25 MHz chunks of spectrum used. EV-DO is not designed for voice, and requires a fallback to 1xRTT when a voice call is placed or received. |
Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennae, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still). Usually the bandwidth is shared between several terminals. The performance of each technology is determined by a number of constraints, including the spectral efficiency of the technology, the cell sizes used, and the amount of spectrum available. For more information, see Comparison of wireless data standards.
For more comparison tables, see bit rate progress trends, comparison of mobile phone standards, spectral efficiency comparison table and OFDM system comparison table.
4G is being developed to accommodate the quality of service (QoS) and rate requirements set by further development of existing 3G applications like mobile broadband access, Multimedia Messaging Service (MMS), video chat, mobile TV, but also new services like HDTV. 4G may allow roaming with wireless local area networks, and may interact with digital video broadcasting systems.
In the literature, the assumed or expected 4G requirements have changed during the years before IMT-Advanced was specified by the ITU-R. These are examples of objectives stated in various sources:
The 4G system was originally envisioned by the Defense Advanced Research Projects Agency (DARPA). The DARPA selected the distributed architecture and end-to-end Internet protocol (IP), and believed at an early stage in peer-to-peer networking in which every mobile device would be both a transceiver and a router for other devices in the network, eliminating the spoke-and-hub weakness of 2G and 3G cellular systems.[27] Since the 2.5G GPRS system, cellular systems have provided dual infrastructures: packet switched nodes for data services, and circuit switched nodes for voice calls. In 4G systems, the circuit-switched infrastructure is abandoned and only a packet-switched network is provided, while 2.5G and 3G systems require both packet-switched and circuit-switched network nodes, i.e. two infrastructures in parallel. This means that in 4G, traditional voice calls are replaced by IP telephony.
Cellular systems such as 4G allow seamless mobility; thus a file transfer is not interrupted in case a terminal moves from one cell (one base station coverage area) to another, but handover is carried out. The terminal also keeps the same IP address while moving, meaning that a mobile server is reachable as long as it is within the coverage area of any server. In 4G systems this mobility is provided by the mobile IP protocol, part of IP version 6, while in earlier cellular generations it was provided only by physical-layer and datalink-layer protocols. In addition to seamless mobility, 4G provides flexible interoperability of the various kinds of existing wireless networks, such as satellite, cellular wireless, WLAN, PAN and systems for accessing fixed wireless networks.[28]
While maintaining seamless mobility, 4G will offer very high data rates with expectations of 100 Mbit/s wireless service. The increased bandwidth and higher data transmission rates will allow 4G users the ability to utilize high-definition video and the videoconferencing features of mobile devices attached to a 4G network. The 4G wireless system is expected to provide a comprehensive IP solution where multimedia applications and services can be delivered to the user on an 'anytime, anywhere' basis with a satisfactory high data rate, premium quality and high security.[29]
4G is described as MAGIC: mobile multimedia, anytime anywhere, global mobility support, integrated wireless solution, and customized personal service. Some key features (primarily from users' points of view) of 4G mobile networks are:
The Migration to 4G standards incorporates elements of many early technologies and often you will read about solutions that use Code (a cypher), Frequency or Time as the basis of multiplexing the spectrum more efficiently. While Spectrum is considered finite, Cooper's Law has shown that we have developed more efficient ways of using spectrum just as the Moore's law has show our ability to increase processing.
As the wireless standards evolved, the access techniques used also exhibited increase in efficiency, capacity and scalability. The first generation wireless standards used TDMA and FDMA. In the wireless channels, TDMA proved to be less efficient in handling the high data rate channels as it requires large guard periods to alleviate the multipath impact. Similarly, FDMA consumed more bandwidth for guard to avoid inter carrier interference. So in second generation systems, one set of standard used the combination of FDMA and TDMA and the other set introduced an access scheme called CDMA. Usage of CDMA increased the system capacity, but as a theoretical drawback placed a soft limit on it rather than the hard limit (i.e. a CDMA network setup does not inherently reject new clients when it approaches its limits, resulting in a denial of service to all clients when the network overloads; though this outcome is avoided in practical implementations by admission control of circuit switched or fixed bitrate communication services). Data rate is also increased as this access scheme (providing the network is not reaching its capacity) is efficient enough to handle the multipath channel. This enabled the third generation systems, such as IS-2000, UMTS, HSXPA, 1xEV-DO, TD-CDMA and TD-SCDMA, to use CDMA as the access scheme. However, the issue with CDMA is that it suffers from poor spectral flexibility and computationally intensive time-domain equalization (high number of multiplications per second) for wideband channels.
Recently, new access schemes like Orthogonal FDMA (OFDMA), Single Carrier FDMA (SC-FDMA), Interleaved FDMA and Multi-carrier CDMA (MC-CDMA) are gaining more importance for the next generation systems. These are based on efficient FFT algorithms and frequency domain equalization, resulting in a lower number of multiplications per second. They also make it possible to control the bandwidth and form the spectrum in a flexible way. However, they require advanced dynamic channel allocation and traffic adaptive scheduling.
WiMax is using OFDMA in the downlink and in the uplink. For the next generation UMTS, OFDMA is used for the downlink. By contrast, IFDMA is being considered for the uplink since OFDMA contributes more to the PAPR related issues and results in nonlinear operation of amplifiers. IFDMA provides less power fluctuation and thus avoids amplifier issues. Similarly, MC-CDMA is in the proposal for the IEEE 802.20 standard. These access schemes offer the same efficiencies as older technologies like CDMA. Apart from this, scalability and higher data rates can be achieved.
The other important advantage of the above mentioned access techniques is that they require less complexity for equalization at the receiver. This is an added advantage especially in the MIMO environments since the spatial multiplexing transmission of MIMO systems inherently requires high complexity equalization at the receiver.
In addition to improvements in these multiplexing systems, improved modulation techniques are being used. Whereas earlier standards largely used Phase-shift keying, more efficient systems such as 64QAM are being proposed for use with the 3GPP Long Term Evolution standards.
Unlike 3G, which is based on two parallel infrastructures consisting of circuit switched and packet switched network nodes respectively, 4G will be based on packet switching only. This will require low-latency data transmission.
By the time that 4G was deployed, the process of IPv4 address exhaustion was expected to be in its final stages. Therefore, in the context of 4G, IPv6 support is essential in order to support a large number of wireless-enabled devices. By increasing the number of IP addresses, IPv6 removes the need for network address translation (NAT), a method of sharing a limited number of addresses among a larger group of devices, although NAT will still be required to communicate with devices that are on existing IPv4 networks.
As of June 2009[update], Verizon has posted specifications that require any 4G devices on its network to support IPv6.[30]
The performance of radio communications depends on an antenna system, termed smart or intelligent antenna. Recently, multiple antenna technologies are emerging to achieve the goal of 4G systems such as high rate, high reliability, and long range communications. In the early 1990s, to cater for the growing data rate needs of data communication, many transmission schemes were proposed. One technology, spatial multiplexing, gained importance for its bandwidth conservation and power efficiency. Spatial multiplexing involves deploying multiple antennas at the transmitter and at the receiver. Independent streams can then be transmitted simultaneously from all the antennas. This technology, called MIMO (as a branch of intelligent antenna), multiplies the base data rate by (the smaller of) the number of transmit antennas or the number of receive antennas. Apart from this, the reliability in transmitting high speed data in the fading channel can be improved by using more antennas at the transmitter or at the receiver. This is called transmit or receive diversity. Both transmit/receive diversity and transmit spatial multiplexing are categorized into the space-time coding techniques, which does not necessarily require the channel knowledge at the transmitter. The other category is closed-loop multiple antenna technologies, which require channel knowledge at the transmitter.
SDR is one form of open wireless architecture (OWA). Since 4G is a collection of wireless standards, the final form of a 4G device will constitute various standards. This can be efficiently realized using SDR technology, which is categorized to the area of the radio convergence.
As of December 2011, there are no 4G networks that fulfil the International Telecommunication Union's criteria of being able to achieve 1Gbit/s while stationary.[31]
However in December 2010, the ITU recognized that current versions of LTE, WiMax and other evolved 3G technologies that do not fulfill "IMT-Advanced" requirements could nevertheless be considered "4G", provided they represent forerunners to IMT-Advanced and "a substantial level of improvement in performance and capabilities with respect to the initial third generation systems now deployed."[2]
In May 2005, Digiweb, an Irish fixed and wireless broadband company, announced that they had received a mobile communications license from the Irish Telecoms regulator, ComReg. This service will be issued the mobile code 088 in Ireland and will be used for the provision of 4G Mobile communications.[57][58] Digiweb launched a mobile broadband network using FLASH-OFDM technology at 872 MHz.
On September 20, 2007, Verizon Wireless announced plans for a joint effort with the Vodafone Group to transition its networks to the 4G standard LTE. On December 9, 2008, Verizon Wireless announced their intentions to build and begin to roll out an LTE network by the end of 2009. Since then, Verizon Wireless has said that they will start their rollout by the end of 2010.
On July 7, 2008, South Korea announced plans to spend 60 billion won, or US$58,000,000, on developing 4G and even 5G technologies, with the goal of having the highest mobile phone market share by 2012, and the hope of an international standard.[59]
Telus and Bell Canada, the major Canadian cdmaOne and EV-DO carriers, have announced that they will be cooperating towards building a fourth generation (4G) LTE wireless broadband network in Canada. As a transitional measure, they are implementing 3G UMTS that went live in November 2009.[60]
Sprint Nextel offers a 3G/4G connection plan, currently available in select cities in the United States.[47] It delivers rates up to 10 Mbit/s. Sprint has announced that they will launch a LTE network in early 2012.[61]
In the United Kingdom, Telefónica O2 is to use Slough as a guinea pig in testing the 4G network and has called upon Huawei to install LTE technology in six masts across the town to allow people to talk to each other via HD video conferencing and play PlayStation games while on the move.[62]
Verizon Wireless has announced that it plans to augment its CDMA2000-based EV-DO 3G network in the United States with LTE, and is supposed to complete a rollout of 175 cities by the end of 2011, two thirds of the US population by mid-2012, and cover the existing 3G network by the end of 2013.[63] AT&T, along with Verizon Wireless, has chosen to migrate toward LTE from 2G/GSM and 3G/HSPA by 2011.[64]
Sprint Nextel has deployed WiMAX technology which it has labeled 4G as of October 2008. It is currently deploying to additional markets and is the first US carrier to offer a WiMAX phone.[65]
The U.S. FCC is exploring the possibility of deployment and operation of a nationwide 4G public safety network which would allow first responders to seamlessly communicate between agencies and across geographies, regardless of devices. In June 2010 the FCC released a comprehensive white paper which indicates that the 10 MHz of dedicated spectrum currently allocated from the 1700 MHz spectrum for public safety will provide adequate capacity and performance necessary for normal communications as well as serious emergency situations.[66]
TeliaSonera started deploying LTE (branded "4G") in Stockholm and Oslo November 2009 (as seen above), and in several Swedish, Norwegian, and Finnish cities during 2010. In June 2010, Swedish television companies used 4G to broadcast live television from the Swedish Crown Princess' Royal Wedding.[67]
Safaricom, a telecommunication company in East& Central Africa, began its setup of a 4G network in October 2010 after the now retired& Kenya Tourist Board Chairman, Michael Joseph, regarded their 3G network as a white elephant i.e. it failed to perform to expectations. Huawei was given the contract the network is set to go fully commercial by the end of Q1 of 2011
Telstra announced on 15 February 2011, that it intends to upgrade its current Next G network to 4G with Long Term Evolution (LTE) technology in the central business districts of all Australian capital cities and selected regional centers by the end of 2011.[68]
Sri Lanka Telecom Mobitel and Dialog Axiata announced that first time in South Asia Sri Lanka have successfully tested and demonstrated 4G technology on 6th of May 2011(Sri Lanka Telecom Mobitel) and 7th of May 2011(Dialog Axiata) and began the setup of their 4G Networks in Sri Lanka.[69][70]
On May 2011, Brazil's Communication Ministry announced that the 12 host cities for the 2014 FIFA World Cup to be held there will be the first to have their networks upgraded to 4G.[71] Mobitel was able to reach 96mbps of speed while Dialog Axiata reached 128mbps on their demonstration.
In mid September 2011, [2] Mobily of Saudi Arabia, announced their 4G LTE networks to be ready after months of testing and evaluations.
On September 2011, UAE's Etisalat announced commercial launch of 4G LTE services covering over 70% of country's urban areas.
India is expected to see launch of 4G services using TD-LTE technology in January 2012.[72] The services will be launched by Augere, a UK based company, in Madhya Pradesh and Chhattisgarh under the Zoosh brand name.
A major issue in 4G systems is to make the high bit rates available in a larger portion of the cell, especially to users in an exposed position in between several base stations. In current research, this issue is addressed by macro-diversity techniques, also known as group cooperative relay, and also by Beam-Division Multiple Access (BDMA).[73]
Pervasive networks are an amorphous and at present entirely hypothetical concept where the user can be simultaneously connected to several wireless access technologies and can seamlessly move between them (See vertical handoff, IEEE 802.21). These access technologies can be Wi-Fi, UMTS, EDGE, or any other future access technology. Included in this concept is also smart-radio (also known as cognitive radio) technology to efficiently manage spectrum use and transmission power as well as the use of mesh routing protocols to create a pervasive network.
Preceded by 3rd Generation (3G) |
Mobile Telephony Generations | Succeeded by 5th Generation (5G) |
|